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Accuracy of SPH viscous flow models
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SUMMARY

In this paper, we quantify how the accuracy of 1D and 2D smoothed particle hydrodynamics simulations
of viscous diffusion depend upon (i) the mean inter-particle distance �x , (ii) the smoothing length h and
(iii) the randomness of the particle positions. In both the 1D and 2D cases, the method converges only in
the case where randomness is absent and for a few values of h/�x including both integer (for 1D) and
non-integer values (both 1D and 2D). For any other (fixed) value of h/�x , the method does not converge.
In most cases, increasing randomness decreases the accuracy of the results, as does the ability of particles
to move. Simulations using larger values of h/�x appear to be less influenced by particle randomness
and ability to move. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Errors in smoothed particle hydrodynamics (SPH) simulations can behave in a strange way for
those of us who are more familiar with more traditional grid-based numerical schemes. In particular,
Quinlan et al. [1] showed that the accuracy of SPH approximations can deteriorate when resolution
is improved by increasing the number of computational particles. The issue is due to the fact
that there are two independent length scales in SPH—namely, the inter-particle distance �x and
the kernel-smoothing distance h. SPH simulations usually ‘converge’ only when both of these
quantities reduce to zero and when �x diminishes more rapidly than h [2].

1.1. SPH approximations

SPH is a mesh-free method in which flow variables are approximated by a kernel-smoothing
interpolation based on values stored at computational particles, and differentiation is in principle
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performed on the kernel rather than any underlying grid. The (smoothed) value of any flow variable
F at any point a is given by

〈F〉a =∑
b

mb

�b
FbWab (1)

where the sum is over all neighbouring particles within the radius of the interpolating kernel,
mb, �b and Fb are the values of mass, density and F at particle b, Wab is the value of
the interpolation function W (ra−rb,h), with separation ra−rb and characteristic kernel
dimension h.

The (smoothed) gradient of F could be found by direct differentiation of Equation (1). In
practice, however, the following approximation is usually used:

〈∇F〉a = 1

�a

∑
b
mbFba∇Wab (2)

where Fba =Fb−Fa , rab=ra−rb and ∇Wab is the gradient of Wab.
Similarly, the Laplacian could be found by directly differentiating (1). However, when low-

degree polynomials are used as the interpolation functions, inaccuracies can arise, particularly
spurious oscillations as observed in Cummins and Rudman [3]. Here the following ‘second-
order’ approximation is used, similar to that used by Brookshaw [4], Morris et al. [5] and
others:

〈∇2F〉a =∑
b

2mb

�b
Fabrab.

∇Wab

r2ab
(3)

Throughout this paper, we utilize the following, widely used interpolation kernel:

W (r,h)=C(h)

{
1−3q2/2+3q3/4, 0�q�1

(2−q)3/4, 1<q�2
(4)

where W is zero otherwise, q=|r|/h, and C(h)=2/(3h) in 1D and 10/(7�h2) in 2D so
that W integrates to unity over a circle of radius 2h. W approaches a delta function as h
diminishes.

2. ANALYSIS OF APPROXIMATIONS

2.1. Regular spacing

In order to analyse the accuracy of (3), a Taylor series expansion of all the contributions to this
expression was found. We concentrate on local short-range errors, in which case the analysis is
not specific to a particular flow but does not address more specific long-range errors encountered
in SPH [6]. In the first instance, particles b were uniformly distributed along the x-axis at regular
intervals �x , and particle a was located at the origin. For values of h/�x between 0.525 (in
which case a was influenced only by particles at ±�x) and 5.025 (when a was influenced by
20 particles at distances up to ±5�x), the contributions to (3) were summed symbolically using
the Maple computer algebra system. For regularly spaced particles, the leading contribution is
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Figure 1. SPH approximation of y′′.

proportional to the second derivative of F (and only even derivatives appear in the approxima-
tion) and the remaining terms are of order �x2. However, only for a small number of values
of h/�x is the coefficient of the second derivative equal to unity (thus errors are O(1) and
the method does not converge). Figure 1 shows a plot of this coefficient for values of h/�x
between 0.8 and 2.5 (which is consistent with and extends the results in Table I of Cleary and
Monaghan [7]).

It is exactly unity at integer values of h/�x and also for values around 1.425, 2.45, 3.45 and
4.5 (and note that the method is actually central differencing for h/�x=1). For these values of
h/�x , the method would be expected to converge (so long as the spacing remains uniform) as the
number of particles increases. For any other values of this ratio, the method does not converge.
However, the variation of the coefficient from the value of 1 diminishes significantly as h/�x
increases.

This exercise was then repeated to analyse the errors from 2D SPH approximations. Here,
particles b were uniformly distributed in a regular lattice arrangement with spacing �x in both
directions, with particle a again located at the origin. So that ratios of h/�x up to 2.5 could
be analysed, the contributions from up to 72 neighbouring particles were accounted for, again
using Maple’s symbolic capabilities. In this case, the leading contribution is proportional to the
Laplacian, but again the coefficient is unity for only a few values of h/�x , namely around 0.925,
1.25, 1.525 and 2.2. The values of the coefficient are also shown in Figure 1. For h/�x exceeding 1,
the coefficient of the Laplacian varies slightly less than was the case in 1D, and the variation
again diminishes as h/�x increases. Again, only even derivatives appear and higher derivatives
are O(�x2).

2.2. Irregular spacing

In practice, SPH particles are irregularly spaced, because they follow the motion of the fluid flow.
The above analysis must therefore be modified to take into account the irregularity of the particle
spacing. This was allowed for by perturbing the positions of neighbouring particles b from their
initial regular spacing. Thus, each particle was shifted by an amount (�x,�y), where �x and �y
were randomly and independently sampled for each particle from a uniform distribution of mean 0
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Figure 2. SPH approximation of y′′ (1D, random).

and width � (�y=0 for 1D analysis). Thus, � is a measure of randomness of the particle positions.
In order to characterize the behaviour in these random configurations, the SPH expression for
the Laplacian was again evaluated as a sum of Taylor series using Maple and the coefficients of
the various derivatives were identified. Since the coefficients are different for every randomized
particle configuration, 50 repetitions were carried out to find mean values of coefficients (this
can be viewed as an attempt to mimic what happens when particles move randomly as in SPH
simulations).

2.2.1. One-dimensional analysis. In the 1D case, the leading term in the SPH approximation was
not the second derivative, but a first derivative. Even though the coefficient of this derivative was
generally small, it was divided by �x , so that keeping a given irregular arrangement whilst reducing
the inter-particle spacing would result in a divergent approximation. In general, derivatives of all
orders appear in the approximation. It appears to be randomly distributed around a mean value
of zero, and the variability is largest for small values of h/�x and diminishes as h/�x increases.
Figure 2 plots the coefficient of the second derivative as a function of h/�x . For values of h/�x
around unity, the randomized particle positions lead to significantly diminished values of this
coefficient for large values of �. For larger values of h/�x , the coefficient approaches 1 but appears
to do so very slowly.

2.2.2. Two-dimensional analysis. In the 2D case, there are two leading terms, both first deriva-
tives divided by �x and with generally different (though small, and apparently with mean-zero)
coefficients. All three second derivatives appear in the approximations. The coefficients of the
xx and yy derivatives are comparable (though not identical, in general) and the coefficient of
the cross-derivative term is small and has a mean value close to zero. In general, all higher-
order derivatives are present in the approximations. Figure 3(a) and (b) plots the coefficient
of the xx and yy derivatives as a function of h/�x . Similar behaviour to that seen in 1D is
observed: small values of the coefficient of these terms for large values of � and smaller values
of h/�x . For larger values of h/�x , the coefficient again approaches 1 but equally as slowly as
in 1D.
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Figure 3. SPH approximation of (a) Fxx and (b) Fyy .

3. NUMERICAL RESULTS

We simulate pressure-driven flow between parallel plates as a startup problem using SPH. At t=0,
particles are static. They are then accelerated by an instantaneously activated pressure gradient
(which is implemented as a uniform body force). The resulting equation of motion is

�u
�t

=−G+ 1

Re
∇2u (5)

where u is the velocity, G is a constant vector representing the pressure gradient and Re is the
Reynolds number. Without loss of generality, the distance between the plates is equal to unity, we
set Re=1 and choose G to give a maximum velocity equal to 1 at the centreline in the steady
state. The no-slip condition is applied on the plates, with fixed dummy particles positioned behind
these wall boundaries [8] having velocity equal to the corresponding wall particle. An explicit
scheme (traditional in SPH) was used to integrate [5], and the Laplacian term is evaluated using
the approximations given in Section 2. Computations were carried out with both regularly and
irregularly spaced particles, in both 1D and 2D, and were considered to be fully developed at 1 s (at
which time the analytical solution shows a centreline u-velocity >99.9% of the steady-state value).
In the computations, the timestep, dt , satisfies the viscous diffusion timescale (dt�0.1�x2/�) and
the Courant condition (dt�0.1�x/Umax). For Re=1 the viscous timescale is significantly smaller
and so this condition dictates the timestep used. The error comparisons presented are all computed
from the steady-state solution at a fixed time of 1 s; hence the number of timesteps used is different
for each particle resolution. This approach is what would be used in practical applications of SPH,
as the solution is sought in as few timesteps as possible in order to reduce the computational
effort. However, simulations have also been carried out using a fixed number of timesteps for
all resolutions. In this case the timestep was based on a resolution of 100 particles. This gave
results that were virtually identical to those obtained when the timestep is set for each individual
resolution.

3.1. One-dimensional results

3.1.1. Regular spacing. In 1D, we assume a flow parallel to the x-axis in an xy coordinate
system, with velocity dependent on y only. Three values of h/�x were used, namely h/�x=1,
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Table I. Convergence for uniformly spaced particles (1D).

n h/�x=1 h/�x=1.2 h/�x=1.5

9 4.19E−05 3.49E−02 1.72E−01
13 1.55E−05 1.37E−02 8.01E−02
21 4.27E−06 9.92E−03 4.66E−02
37 1.09E−06 1.52E−02 3.12E−02
69 2.75E−07 1.77E−02 2.38E−02
133 6.89E−08 1.89E−02 2.02E−02
261 1.84E−02
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Figure 4. Errors at steady state (1D simulations) vs 1/�x : (a) h=�x ; (b) h=1.2�x ; and (c) h=1.5�x .
(◦) �=0.0625; (×) �=0.125; (�) �=0.25; (�) �=0.5. Randomized tests: 50 realizations.

1.2 and 1.5—these values are often found in the literature. In order to quantify error behaviour,
the root mean square (r.m.s) difference between the computed values and those obtained from
the analytical solution was computed. For irregular particle spacing this was repeated 50 times
for each combination of h and �. As noted above, when h=�x , the SPH formulation of the
viscous term is simply central differencing thus the error in the computational results is O(�x2)
and errors can be reduced indefinitely by increasing the number of SPH particles in the simu-
lation. However, for other values of h/�x , the error behaviour is much less straightforward,
as shown in Table I. In particular, for h/�x=1.2, errors initially decrease then increase and
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Figure 5. Errors at steady state (2D simulations, fixed particles) vs 1/�x : (a) h=�x ; (b)
h=1.25�x ; and (c) h=1.5�x . (�) �=0; (◦) �=0.0625; (×) �=0.125; (�) �=0.25;

(�) �=0.5. Randomized tests: 50 realizations.

flatten off as inter-particle spacing (which is inversely proportional to the number of particles,
n) decreases. For h/�x=1.5 the errors are still decreasing but not as quickly as those for
h/�x=1. Overall, the behaviour appears to be consistent with that observed in the previous
section.

3.1.2. Irregular particle spacing. In SPH computations, particle spacing is almost never
uniform. To model this, SPH simulations have been undertaken in which particle positions
were random. Figure 4(a)–(c) illustrates the convergence behaviour for three cases: (a) h=�x ;
(b) h=1.2�x and (c) h=1.5�x . In almost every case, randomness (increasing �) increases
the error. However, increasing randomization can—as in case (b)—bring about a reduc-
tion in errors. This initially surprising result can be explained with reference to Figure 3
as follows. For �=0, the coefficient of the second derivative is over-predicted (effectively
increasing the viscosity in the simulation). As � increases, the coefficient becomes closer to
1, subsequently diminishing as � increases beyond 0.5. The fact that, for h=1.5�x , errors
are generally larger than for h=�x and h=1.2�x and are insensitive to small values of � is
again consistent with Figure 3. In every case, errors seem to converge extremely slowly or not
at all.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1261–1269
DOI: 10.1002/fld



1268 D. I. GRAHAM AND J. P. HUGHES

0.01

0.1

1
(a) (b)

(c)

10 100 1000 1 10 100 1000

h= ∆x

0.001

1

0.01

0.1

0.001

1

1 10 100 1000

0.01

0.1

0.001

1

h= 1.25∆x

h= 1.5∆x

Figure 6. Errors at steady state (2D simulations, moving particles) vs number of particles: (a) h=�x ;
(b) h=1.25�x ; and (c) h=1.5�x . (�) �=0; (o) �=0.0625; (×) �=0.125; (�) �=0.25; (�) �=0.5.

Randomized tests: 50 realizations.

3.2. Two-dimensional results

In 2D, we do not assume a priori that the flow is unidirectional. However, we do assume here
that the pressure gradient is uniform. Again, three values of h/�x were used, namely h/�x=1,
1.25 and 1.5—chosen on the basis of the results from Section 2. In 2D, when h/�x=1, the
SPH formulation of the viscous term is no longer simply central differencing, due to the presence
of particles located at the corner points in a 3×3 lattice. As seen in Section 2, however, for
h/�x=1.25 and 1.5, the SPH coefficient of the Laplacian is very close to 1, thus the method
should be (almost) O(�x2) for regularly spaced particles.

Two separate sets of 2D simulations have been completed. In the first, particles were fixed in
space, contrary to usual SPH practice of moving particles according to their velocity. In the second,
particles are allowed to move in the traditional SPH way. In order to quantify error behaviour, SPH
approximations for u-velocity components are evaluated at 100 points along the mid-plane and
the r.m.s. difference between the computed values and those obtained from the analytical solution
was computed. This was repeated 50 times for each combination of h and �.

Figure 5(a)–(c) shows the mean of the 50 RMS errors for the fixed particles. Again, these results
can be explained with reference to the analysis in Section 2. For regularly spaced particles with
h/�x=1.25 and 1.5, r.m.s. errors are still decreasing with n (where the mean inter-particle spacing
�x is 1/n), whereas for h/�x=1, errors flatten off—all consistent with Figure 3. Increasing
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randomness generally increases the errors in the approximations, again consistent with Figure 3,
although perhaps the results h/�x=1 may have been expected to improve with moderate random-
ness. For the range of values of �x used here, convergence did not reach second order even for
regularly spaced particles, but this is in any case compromised by the (small) zeroth-order errors
that appear.

Figure 6(a)–(c) shows the corresponding error results in the case where particles are allowed
to move. For regularly spaced particles, the motion of the particles has a beneficial effect for
h/�x=1, is detrimental for h/�x=1.25 and has little effect for h/�x=1.5. The relationship
between these results and those in Section 2 is less clear, but perhaps the effect of moving the
regularly spaced particles is akin to increasing randomness of fixed particles. It could then be
argued that the expected benefit of moderate randomness to h/�x which was not seen in fixed-
particle runs now becomes apparent when the particles move. When the initial particle spacing is
random, the effect of moving the particles is detrimental for h/�x=1 and neutral for the other
two cases.

4. CONCLUSIONS

Errors in both 1D and 2D SPH viscous flow models have been analysed both analytically and
numerically. Truncation errors have been analysed for both regularly and irregularly spaced particles
in 1D and 2D. It is shown that the method is convergent only under very unusual circumstances
and that random particle configurations can have a dramatic effect on the accuracy of the SPH
approximations. Errors in numerical approximations have been quantified by investigating an
impulsive pressure-driven flow between parallel plates. The effects of randomness of particle
position and of particle freedom-to-move have been quantified (both generally decrease accuracy).
For 2D simulations, it is shown that approximations with h/�x=1.5 are (almost) convergent for
regularly spaced particles and are less sensitive to particle randomness and motion than those with
h/�x=1 or 1.25.
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